Math 33A Worksheet Week 5

TA: Emil Geisler and Caleb Partin

April 29, 2024

Exercise 1. Determine whether the following sets of vectors are linearly independent or linearly dependent:

(a)
$$\begin{bmatrix} 3\\-1 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} 2\\2 \end{bmatrix}$$

(b) $\begin{bmatrix} 0\\0\\0 \end{bmatrix}$
(c) $\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\3\\0\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\4\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\5 \end{bmatrix}$

Exercise 2. Let $A : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation given by the matrix $\begin{bmatrix} 4 & 2 & -1 \\ 0 & 1 & 0 \\ -8 & 0 & 2 \end{bmatrix}$. Find a basis for ker A. Find a basis for im A. What are the dimensions of ker A and im A?

Exercise 3. Find a linear transformation $A : \mathbb{R}^3 \to \mathbb{R}^3$ which satisfies each of the following conditions, or explain why such a linear transformation doesn't exist:

(a) ker
$$A = \{\vec{0}\}, \text{ im } A = \{\vec{0}\}.$$

(b) ker $A = \text{span}\left\{\begin{bmatrix}1\\3\\-3\end{bmatrix}\right\}$ and det $A = 0$
(c) ker $A = \text{span}\left\{\begin{bmatrix}1\\3\\-3\end{bmatrix}\right\}$ and det $A \neq 0$
(d) ker $A = \text{span}\left\{\begin{bmatrix}1\\0\\0\end{bmatrix}, \begin{bmatrix}0\\1\\0\end{bmatrix}\right\}, \text{ im } A = \text{span}\left\{\begin{bmatrix}1\\0\\0\end{bmatrix}\right\}.$

Exercise 4. Find the kernel of the following matrices:

- (a) $\begin{bmatrix} 3 & 2 & 1 \\ -1 & 0 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 3 & -1 \\ 0 & 1 \\ 2 & 1 \end{bmatrix}$
- (c) A for $A: \mathbb{R}^n \to \mathbb{R}^n$ invertible.
- (d) *A* with row reduced echelon form $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \end{bmatrix}$.

Challenge/Conceptual Problems

Exercise 5.

Let A be a $m \times n$ matrix, $v \in \mathbb{R}^n$, $w \in \mathbb{R}^m$ such that Av = w. Now suppose that v' is another vector in \mathbb{R}^n such that Av' = 0, i.e. v' is in ker A. What is A(v + v')?

(For a concrete example, Let $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$, $v = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, so $w = Av = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$. Now if we let $v' = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$, so Av' = 0, what is $A(v + v') = A \begin{bmatrix} -1 \\ 2 \end{bmatrix}$?)

Exercise 6.

Let A be any matrix, and B be the RREF for A.

- (a) Is ker $A = \ker B$?
- (b) Is $\operatorname{im} A = \operatorname{im} B$?